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ExecuJve Summary

•  Architectures are growing more complex 
–  This will get worse; not better 

•  Programming systems must provide performance portability (in 
addition to functional portability)!! 

•  Diverse heterogeneous systems including FPGAs 

•  Programming NVM systems is the next major challenge 
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 Current ASCR CompuJng At a Glance

System attributes NERSC  
Now 

OLCF 
Now 

ALCF  
Now NERSC Upgrade OLCF Upgrade ALCF Upgrades 

Planned Installation Edison TITAN MIRA Cori 
2016 

Summit 
2017-2018 

Theta 
2016 

Aurora 
2018-2019 

System peak (PF) 2.6 27  10 > 30 150  >8.5 180  

Peak Power (MW) 2 9 4.8 < 3.7  10   1.7 13 

Total system memory 357 TB 710TB 768TB 

~1 PB DDR4 + High 
Bandwidth Memory 

(HBM)+1.5PB 
persistent memory  

> 1.74 PB DDR4 + 
HBM + 2.8 PB 

persistent memory 

>480 TB DDR4 + 
High Bandwidth 
Memory (HBM) 

> 7 PB High Bandwidth 
On-Package Memory 

Local Memory and 
Persistent Memory 

Node performance (TF) 0.460  1.452   0.204  > 3 > 40 > 3 > 17 times Mira 

Node processors Intel Ivy 
Bridge  

AMD 
Opteron    
Nvidia 
Kepler   

64-bit 
PowerPC 

A2 

Intel Knights Landing  
many core CPUs  

Intel Haswell CPU in 
data partition 

Multiple IBM 
Power9 CPUs & 
multiple Nvidia 
Voltas GPUS  

Intel Knights Landing 
Xeon Phi many core 

CPUs 
 

Knights Hill Xeon Phi 
many core CPUs   

System size (nodes) 5,600 
nodes 

18,688 
nodes 49,152 

9,300 nodes 
1,900 nodes in data 

partition 
~3,500 nodes >2,500 nodes >50,000 nodes 

System Interconnect  Aries Gemini 5D Torus Aries Dual Rail  
EDR-IB   Aries 2nd Generation Intel 

Omni-Path Architecture 

File System 
7.6 PB 

168 GB/s, 
Lustre® 

32 PB 
1 TB/s, 
Lustre® 

26 PB 
300 GB/s 
GPFS™ 

28 PB 
744 GB/s  
Lustre® 

120 PB 
1 TB/s 

GPFS™ 

10PB, 210 GB/s 
Lustre initial 

150 PB 
1 TB/s 
Lustre® 

Complexity α T 
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•  LT v. TO Cores 
–  GPUs (discrete, integrated) 
–  FPGAs 

•  SIMD/short vector 

•  SMT, threading models 

•  DVFS (incl Turboboost) 

•  Special Purpose 
–  RNGs 
–  AES, video engines 
–  Transactional memory 
–  Virtualization support 

•  Reconfigurable computing 

•  etc 

Core, Processor Architectures

http://www.techpowerup.com/img/15-08-18/77a.jpg  

http://cdn.wccftech.com/wp-content/uploads/2014/03/NVIDIA-Pascal-GPU-Chip-
Module.jpg  

Skylake 

Pascal 
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IntegraJon, M&A Dominate Discussion
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Complex Programming Models

System: MPI, Legion, HPX, Charm++, etc 

Low overhead 

Resource contention 

Locality 

Node: OpenMP, Pthreads, U-threads, etc 

SIMD 

NUMA, HBM 

Cores: OpenACC, CUDA, OpenCL, OpenMP4, … 
Memory use, coalescing Data orchestration Fine grained parallelism Hardware features 



Programming 
Heterogeneous Systems
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•  Vertically integrated toolchain for 
programming systems 

–  ARES is not trying to build a complete toolchain, 
but rather leverage other software 

•  Define an open-source, extensible, 
universal High-Level Intermediate 
Representation (HLIR) leveraging the 
widely adopted LLVM infrastructure 

•  HLIR Analysis and optimization passes 
can be applied to any Frontend 

•  HLIR enables higher level analysis and 
transformation than low level IRs 

•  Lowered to LLVM or native support (e.g., 
CUDA) 

ARES HLIR Approach

ARES HLIR 

LLVM (or native) 

OpenARC,  
Flang 
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Understanding Performance Portability of  
High-level Programming Models for Heterogeneous 

Systems 
•    

Amit Sabne, Putt Sakdhnagool, Seyong Lee, and Jeffrey S. Vetter. Understanding Portability of a High-level Programming Model on Contemporary Heterogeneous Architectures, 
IEEE Micro Volume 35, Issue 4 (DOI: 10.1109/MM.2015.73), 2015. 

•  Problem 
Directive-based, high-level accelerator programming models such as OpenACC provide code 
portability. But how does it fare on performance portability? And what architectural features/compiler 
optimizations affect the performance portability? And how much? 

•  Solution 
–  Proposed a high-level, architecture-independent intermediate language (HeteroIR) to map high-

level programming models (e.g., OpenACC) to diverse heterogeneous devices while maintaining 
portability.  

–  Using HeteroIR, port and measure the performance portability of various OpenACC applications 
on diverse architectures. 

•  Results 
–  Using HeteroIR, OpenARC ported 12 OpenACC applications to 

diverse architectures (NVIDIA CUDA, AMD GCN, and Intel 
MIC), and measured the performance portability achieved 
across all applications. 

–  HeteroIR abstracts out the common architecture functionalities, 
which makes it easy for OpenARC (and other compilers) to 
support diverse heterogeneous architectures. 

–  HeteroIR, combined with rich OpenARC directives and built-in 
tuning tools, allows OpenARC to be used for various tuning 
studies on diverse architectures. 
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Overall Performance Portability

•  BeUer	perf.	portability	among	GPUs	
•  Lesser	across	GPUs	and	MIC	
•  Main	reasons	

–  Parallelism	arrangement	
–  Compiler	op9miza9ons	:	e.g.	device-

specific	memories,	unrolling	etc.	

Performance 
Portability 
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CUDA	Config	 GCN	Config	 MIC	Config	 Best	Config	

11.3x 13.7x 13.8x 22.1x CUDA GCN MIC 

Amit Sabne, Putt Sakdhnagool, Seyong Lee, and Jeffrey S. Vetter. Understanding Portability of a High-level Programming Model on 
Contemporary Heterogeneous Architectures, IEEE Micro Volume 35, Issue 4 (DOI: 10.1109/MM.2015.73), 2015. 
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Intelligent selecJon of opJmizaJons based on 
target architecture
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OpenACC to FPGA: A Framework for DirecJve-Based High-
Performance Reconfigurable CompuJng 

•    

1
4 

S. Lee, J. Kim, and J.S. Vetter, “OpenACC to FPGA: A Framework for Directive-based High-Performance Reconfigurable Computing,” Proc. IEEE 
International Parallel & Distributed Processing Symposium (IPDPS), 2016. (to appear) 

•  Problem 
–  Reconfigurable computers, such as FPGAs, offer more performance and energy efficiency for 

specific workloads than other heterogeneous systems, but their programming complexities and 
low portability have limited their deployment in large scale HPC systems.  

•  Solution 
–  Proposed an OpenACC-to-FPGA translation framework, which performs source-to-source 

translation of the input OpenACC program into an output OpenCL code, which is further 
compiled to an FPGA program by the underlying backend Altera OpenCL compiler. 

•  Impact 
–  Proposed translation framework is the first work to use a standard and portable, directive-based, 

high-level programming system for FPGAs. 
–  Preliminary evaluation of eight OpenACC benchmarks on an FPGA and comparison study on 

other accelerators identified that the unique capabilities of an FPGA offer new performance tuning 
opportunities different from other accelerators.  

 

	

•  Recent Results 
–  Proposed several FPGA-specific OpenACC compiler optimizations and pragma extensions to 

achieve higher throughput. 
–  Evaluated the framework using eight OpenACC benchmarks, and measured performance 

variations on diverse architectures (Altera FPGA, NVIDIA/AMD GPUs, and Intel Xeon Phi). 
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Reconfigurable CompuJng Tests Performance 
Portability in a New Dimension

S. Lee, J. Kim, and J.S. Vetter, “OpenACC to FPGA: A Framework for Directive-based High-Performance Reconfigurable Computing,” Proc. IEEE 
International Parallel & Distributed Processing Symposium (IPDPS), 2016. (to appear) 



Emerging Non-volaJle 
Memory Systems
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Exascale architecture targets circa 2009 
2009 Exascale Challenges Workshop in San Diego 

System attributes 2009 “Pre-Exascale” “Exascale” 
System peak 2 PF 100-200 PF/s 1 Exaflop/s 
Power 6 MW 15 MW 20 MW 
System memory 0.3 PB 5 PB 32–64 PB 
Storage 15 PB 150 PB 500 PB 
Node performance 125 GF 0.5 TF 7 TF 1 TF 10 TF 
Node memory BW 25 GB/s 0.1 TB/s 1 TB/s 0.4 TB/s 4 TB/s 
Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000) 
System size (nodes) 18,700 500,000 50,000 1,000,000 100,000 

Node interconnect BW 1.5 GB/s 150 GB/s 1 TB/s 250 GB/s 2 TB/s 

IO Bandwidth 0.2 TB/s 10 TB/s 30-60 TB/s 

MTTI day O(1 day) O(0.1 day) 

Attendees envisioned two possible architectural swim lanes: 
1.  Homogeneous many-core thin-node system 
2.  Heterogeneous (accelerator + CPU)  fat-node system 
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•  HMC, HBM/2/3, LPDDR4, GDDR5X, 
WIDEIO2, etc 

•  2.5D, 3D Stacking 
•  New devices (ReRAM, PCRAM, 

STT-MRAM, Xpoint) 
•  Configuration diversity 

–  Fused, shared memory 
–  Scratchpads 
–  Write through, write back, etc 
–  Consistency and coherence protocols 
–  Virtual v. Physical, paging strategies 

Memory Systems are Diversifying

http://gigglehd.com/zbxe/files/attach/images/1404665/988/406/011/788d3ba1967e2db3817d259d2e83c88e_1.jpg  

https://www.micron.com/~/media/track-2-images/content-images/content_image_hmc.jpg?la=en  

H.S.P. Wong, H.Y. Lee, S. Yu et al., “Metal-oxide RRAM,” Proceedings of the IEEE, 100(6):1951-70, 2012. 

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High Performance 
Computing,” CiSE, 17(2):73-82, 2015. 
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NVRAM Technology ConJnues to Improve – 
Driven by Market Forces

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg  
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Comparison of Emerging Memory 
Technologies

Jeffrey Vetter, ORNL 
Robert Schreiber, HP Labs 

Trevor Mudge, University of Michigan  
Yuan Xie, Penn State University 

SRAM DRAM eDRAM 2D 
NAND 
Flash 

3D NAND 
Flash 

PCRAM STTRAM 2D 
ReRAM 

3D 
ReRAM 

Data Retention N N N Y Y Y Y Y Y 

Cell Size (F2) 50-200 4-6 19-26 2-5 <1 4-10 8-40 4 <1 

Minimum F demonstrated 
(nm) 

14 25 22 16 64 20 28 27 24 

Read Time (ns) < 1 30 5 104 104 10-50 3-10 10-50 10-50 

Write Time (ns) < 1 50 5 105 105 100-300 3-10 10-50 10-50 

Number of Rewrites 1016 1016 1016 104-105 104-105 108-1010 1015 108-1012 108-1012 

Read Power Low Low Low High High Low Medium Medium Medium 

Write Power Low Low Low High High High Medium Medium Medium 

Power (other than R/W) Leakage Refresh Refresh None None None None Sneak Sneak 

Maturity 

http://ft.ornl.gov/trac/blackcomb 

Intel/Micron Xpoint? 
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Caches 

Main Memory 

I/O Device 

HDD 

•  Newer technologies 
improve  
–  density,  
–  power usage,  
–  durability 
–  r/w performance 

•  In scalable systems, a 
variety of architectures 
exist 
–  NVM in the SAN 
–  NVM nodes in system 
–  NVM in each node 

As NVM improves, it is working its way toward 
the processor core
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 Current ASCR CompuJng At a Glance

System attributes NERSC  
Now 

OLCF 
Now 

ALCF  
Now NERSC Upgrade OLCF Upgrade ALCF Upgrades 

Planned Installation Edison TITAN MIRA Cori 
2016 

Summit 
2017-2018 

Theta 
2016 

Aurora 
2018-2019 

System peak (PF) 2.6 27  10 > 30 150  >8.5 180  

Peak Power (MW) 2 9 4.8 < 3.7  10   1.7 13 

Total system memory 357 TB 710TB 768TB 

~1 PB DDR4 + High 
Bandwidth Memory 

(HBM)+1.5PB 
persistent memory  

> 1.74 PB DDR4 + 
HBM + 2.8 PB 

persistent memory 

>480 TB DDR4 + 
High Bandwidth 
Memory (HBM) 

> 7 PB High Bandwidth 
On-Package Memory 

Local Memory and 
Persistent Memory 

Node performance (TF) 0.460  1.452   0.204  > 3 > 40 > 3 > 17 times Mira 

Node processors Intel Ivy 
Bridge  

AMD 
Opteron    
Nvidia 
Kepler   

64-bit 
PowerPC 

A2 

Intel Knights Landing  
many core CPUs  

Intel Haswell CPU in 
data partition 

Multiple IBM 
Power9 CPUs & 
multiple Nvidia 
Voltas GPUS  

Intel Knights Landing 
Xeon Phi many core 

CPUs 
 

Knights Hill Xeon Phi 
many core CPUs   

System size (nodes) 5,600 
nodes 

18,688 
nodes 49,152 

9,300 nodes 
1,900 nodes in data 

partition 
~3,500 nodes >2,500 nodes >50,000 nodes 

System Interconnect  Aries Gemini 5D Torus Aries Dual Rail  
EDR-IB   Aries 2nd Generation Intel 

Omni-Path Architecture 

File System 
7.6 PB 

168 GB/s, 
Lustre® 

32 PB 
1 TB/s, 
Lustre® 

26 PB 
300 GB/s 
GPFS™ 

28 PB 
744 GB/s  
Lustre® 

120 PB 
1 TB/s 

GPFS™ 

10PB, 210 GB/s 
Lustre initial 

150 PB 
1 TB/s 
Lustre® 

Complexity α T 
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OpportuniJes for NVM in Emerging Systems

• Burst Buffers, C/R 

•  In-mem 
tables 

•  In situ visualization 

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High-
Performance Computing,” Computing in Science & Engineering, 17(2):73-82, 2015, 10.1109/MCSE.
2015.4. 

http://ft.ornl.gov/eavl 

[Liu, et al., MSST 2012] 



Programming NVM 
Systems
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•  Active area of research 
–  See survey 

•  Architectures will vary dramatically  
–  How should we design the node? 
–  Portable across various NVM architectures 

•  Performance for HPC scenarios 
–  Allow user or compiler/runtime/os to 

exploit NVM 
–  Asymmetric R/W 
–  Remote/Local 

•  Security 
•  Assume lower power costs under 

normal usage 

•  Correctness and durability 
–  Enhanced ECC for NVM devices 
–  A crash or erroneous program could 

corrupt the NVM data structures 
–  Programming system needs to provide 

support for this model 

•  ACID 
–  Atomicity: A transaction is “all or nothing” 
–  Consistency: Takes data from one 

consistent state to  another 
–  Isolation:  Concurrent transactions appears 

to be one after another 
–  Durability: Changes to data will remain 

across system boots 

Design Goals for NVM Programming System

10.1109/TPDS.2015.2442980 

MPI and OpenMP do not solve this problem. 
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NVL-C: Portable Programming for NVMM
•  Impact 

–  Minimal, familiar, programming interface: 
–  Minimal C language extensions. 
–  App can still use DRAM. 

–  Pointer safety: 
–  Persistence creates new categories of 

pointer bugs. 
–  Best to enforce pointer safety constraints 

at compile time rather than run time. 
–  Transactions: 

–  Prevent corruption of persistent memory 
in case of application or system failure. 

–  Language extensions enable: 
–  Compile-time safety constraints. 
–  NVM-related compiler analyses and 

optimizations. 
–  LLVM-based: 

–  Core of compiler can be reused for other 
front ends and languages. 

–  Can take advantage of LLVM ecosystem. 

#include <nvl.h> 
struct list { 
  int value; 
  nvl struct list *next; 
}; 
void remove(int k) { 
  nvl_heap_t *heap 
    = nvl_open("foo.nvl"); 
  nvl struct list *a 
    = nvl_get_root(heap, struct list); 
  #pragma nvl atomic 
  while (a->next != NULL) { 
    if (a->next->value == k) 
      a->next = a->next->next; 
    else 
      a = a->next; 
  } 
  nvl_close(heap); 
} 

 

J. Denny, S. Lee, and J.S. Vetter, “NVL-C: Static Analysis Techniques for Efficient, Correct Programming of Non-Volatile 
Main Memory Systems,” in ACM High Performance Distributed Computing (HPDC). Kyoto: ACM, 2016 
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•  Applications extended with 
NVL-C 

•  Compiled with NVL-C 
•  Executed on Fusion ioScale 
•  Compared to DRAM 
•  Various levels of optimization 

Preliminary Results

LULESH XSBENCH 
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Summary

•  Recent trends in extreme-scale HPC paint an ambiguous future 
–  Contemporary systems provide evidence that power constraints are driving architectures to 

change rapidly 

–  Multiple architectural dimensions are being (dramatically) redesigned: Processors, node 
design, memory systems, I/O 

–  Complexity is our main challenge 

•  Applications and software systems are all reaching a state of crisis 
–  Applications will not be functionally or performance portable across architectures 

–  Programming and operating systems need major redesign to address these architectural 
changes 

–  Procurements, acceptance testing, and operations of today’s new platforms depend on 
performance prediction and benchmarking. 

•  We need performance portable programming models now more than ever! 

•  Programming systems must provide performance portability (in addition to 
functional portability)!! 

–  New memory hierarchies with NVM everywhere 

–  Heterogeneous systems 
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